Products Categories
    Product Certification&
    Enterprise Certification

  • Ms.Tina
    Business Director
    Tel: +86-181-62789756

  • Mobile:18162789756
  • Tel:+86-181-62789756
  • Fax:86-027-84759766
  • URL:http://eng.biocuiyuan.com/
  • Province/state:湖北(HUBEI)
  • City:武汉(WUHAN)
  • Street:Room301 at 3rd floor,building of R&D in Non-governmental Science&Technology Zone,Che cheng South Road of Economic&Technology Area, Wuhan , Hubei province, China
  • MaxCard:
Home > Products >  Dihydrodaidzein

Dihydrodaidzein CAS NO.17238-05-0

  • Min.Order: 0
  • Payment Terms:
  • Available Specifications:

  • Product Details

Keywords

  • 17238-05-0
  • Dihydrodaidzein
  • High quality

Quick Details

  • ProName: Dihydrodaidzein
  • CasNo: 17238-05-0
  • Molecular Formula: C15H12O4
  • Appearance: detailed see specifications
  • Application: analysis,activity test,Botanical Refer...
  • DeliveryTime: 1-3 working days after confirming
  • PackAge: According to the clients requirement.
  • Port: China main port
  • ProductionCapacity: /
  • Purity: HPLC≥98%
  • Storage: Store at 2~8°C
  • Transportation: by air or by ocean shipping
  • LimitNum: 0
  • Plant of Origin: Chinese herbal medicine
  • Testing Method: NMR/MS/HPLC
  • Product Ecification: 1mg-1kg
  • Heavy Metal: <10ppm
  • Voluntary Standards: Company standard

Superiority

Hubei CuiRan Biotechnology Co., Ltd is a leading company in the research, development, manufacture and marketing of High Quality Phytochemicals and Extracts(especially Active Ingredients from Traditional Chinese Medicine,Traditional Chinese Medicine), Natural Active Pharmaceutical Ingredients worldwide. From small quantities for R&D or reference standard, to large quantities for customizing or manufacturing, Biopurify emphasizes on consistent and reliable services for his customers.
With excellent quality products and good service, we have clients from more than dozens countries and regions, and we pride ourselves in providing our customers with a total satisfaction experiences.
We are doing our best to be your reliable partner for high quality Phytochemicals and Reference Standards from china.

Our main services:
A. Supply active ingredients and reference standards ofTraditional Chinese Medicine, from mgs to kgs scale.
B. Custom extraction and purification, target Herb Active Ingredients
C. Custom synthesis and semi-synthesis for Natural Active Ingredients
D. CR, CM and PD services from lab scale, pilot scale to commercial scale(GMP is also available)
E.Traditional Chinese Medicine compounds library


1.Provide traditional Chinese medicine reference materials and natural active ingredients;
2.More than 2200 compounds are available for selection, continuously building high-quality natural product libraries for drug research and development;
3.Provide various screening libraries and more inhibitor products;
4.Provide separation and structural determination of natural products;
5.Laboratory scale pilot to commercial scale collaborative research and process development services.More than 180 experiences in phytochemistry (still increasing)
Each product has passed very strict testing (NMR/MS/HPLC)
Agents from many countries

General tips:For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging:1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition:Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Details

Chemical Properties of Dihydrodaidzein

Cas No. 17238-05-0    
PubChem ID 176907 Appearance Powder
Formula C15H12O4 M.Wt 256.26
Type of Compound Flavonoids Storage Desiccate at -20°C
Synonyms 879559-75-8
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 7-hydroxy-3-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one
SMILES C1C(C(=O)C2=C(O1)C=C(C=C2)O)C3=CC=C(C=C3)O
Standard InChIKey JHYXBPPMXZIHKG-UHFFFAOYSA-N
Standard InChI InChI=1S/C15H12O4/c16-10-3-1-9(2-4-10)13-8-19-14-7-11(17)5-6-12(14)15(13)18/h1-7,13,16-17H,8H2
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Dihydrodaidzein

The seeds of Glycine max

Biological Activity of Dihydrodaidzein

Description Dihydrodaidzein-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota.
Targets P-gp
In vitro

Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers.[Pubmed: 25045313]

Biosci Microflora. 2011;30(3):65-71.

Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota.
METHODS AND RESULTS:
Recently, we isolated a Dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota.
CONCLUSIONS:
Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota.

Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes.[Pubmed: 24200780]

Biosci Biotechnol Biochem. 2013;77(11):2210-7.

Isoflavone data concerning the metabolism and permeability on intestinal epithelial cells are scarce, particularly for microbial isoflavone metabolites.
METHODS AND RESULTS:
This study evaluates the absorption mechanisms for the isoflavones, genistein and daidzein, and their microbial metabolites, dihydrogenistein (DHG) and Dihydrodaidzein (DHD). The permeability characteristics of isoflavones were compared by using the Caco-2 human colon adenocarcinoma cell line for a parallel artificial membrane permeability assay, and comparing their physicochemical properties.
CONCLUSIONS:
The data suggest that genistein, DHG and DHD were efficiently transported by passive diffusion according to the pH-partition hypothesis. Genistein was conjugated by phase II metabolizing enzymes and acted as a substrate of the breast cancer resistance protein (BCRP). Daidzein was not conjugated but did act as a substrate for BCRP, multidrug resistance-associated proteins, and P-glycoprotein. In contrast, DHG and DHD were markedly more permeable than their parent isoflavones; they were therefore difficult to transport by the efflux effect, and glucuronidation/sulfation was limited by the flux time.

Protocol of Dihydrodaidzein

Kinase Assay

Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.[Pubmed: 15640190]

Appl Environ Microbiol. 2005 Jan;71(1):214-9.

A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone Dihydrodaidzein to S-equol under anaerobic conditions.
METHODS AND RESULTS:
The metabolite, equol, was identified by using electron impact ionization mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of Dihydrodaidzein, were not detected in bacterial culture medium containing Dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of Dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10.
CONCLUSIONS:
This is the first report of a single bacterium capable of converting a racemic mixture of Dihydrodaidzein to enantiomeric pure S-equol.

Preparing Stock Solutions of Dihydrodaidzein

  1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.9023 mL 19.5114 mL 39.0229 mL 78.0457 mL 97.5572 mL
5 mM 0.7805 mL 3.9023 mL 7.8046 mL 15.6091 mL 19.5114 mL
10 mM 0.3902 mL 1.9511 mL 3.9023 mL 7.8046 mL 9.7557 mL
50 mM 0.078 mL 0.3902 mL 0.7805 mL 1.5609 mL 1.9511 mL
100 mM 0.039 mL 0.1951 mL 0.3902 mL 0.7805 mL 0.9756 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

 

References on Dihydrodaidzein

Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers.[Pubmed:25045313]

Biosci Microflora. 2011;30(3):65-71.

Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a Dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota.

Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.[Pubmed:15640190]

Appl Environ Microbiol. 2005 Jan;71(1):214-9.

A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone Dihydrodaidzein to S-equol under anaerobic conditions. The metabolite, equol, was identified by using electron impact ionization mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of Dihydrodaidzein, were not detected in bacterial culture medium containing Dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of Dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10. This is the first report of a single bacterium capable of converting a racemic mixture of Dihydrodaidzein to enantiomeric pure S-equol.

Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes.[Pubmed:24200780]

Biosci Biotechnol Biochem. 2013;77(11):2210-7.

Isoflavone data concerning the metabolism and permeability on intestinal epithelial cells are scarce, particularly for microbial isoflavone metabolites. This study evaluates the absorption mechanisms for the isoflavones, genistein and daidzein, and their microbial metabolites, dihydrogenistein (DHG) and Dihydrodaidzein (DHD). The permeability characteristics of isoflavones were compared by using the Caco-2 human colon adenocarcinoma cell line for a parallel artificial membrane permeability assay, and comparing their physicochemical properties. The data suggest that genistein, DHG and DHD were efficiently transported by passive diffusion according to the pH-partition hypothesis. Genistein was conjugated by phase II metabolizing enzymes and acted as a substrate of the breast cancer resistance protein (BCRP). Daidzein was not conjugated but did act as a substrate for BCRP, multidrug resistance-associated proteins, and P-glycoprotein. In contrast, DHG and DHD were markedly more permeable than their parent isoflavones; they were therefore difficult to transport by the efflux effect, and glucuronidation/sulfation was limited by the flux time.

Description

Dihydrodaidzein is one of the most prominent dietary phytoestrogens.

Keywords:

Dihydrodaidzein,17238-05-0,879559-75-8,Natural Products, buy Dihydrodaidzein , Dihydrodaidzein supplier , purchase Dihydrodaidzein , Dihydrodaidzein cost , Dihydrodaidzein manufacturer , order Dihydrodaidzein , high purity Dihydrodaidzein

Other products of this supplier

lookchemhot product CAS New CAS Cas Database Article Data Chemical Catalog