Products Categories
    Product Certification&
    Enterprise Certification

  • Ms.Tina
    Business Director
    Tel: +86-181-62789756

  • Mobile:18162789756
  • Tel:+86-181-62789756
  • Fax:86-027-84759766
  • URL:http://eng.biocuiyuan.com/
  • Province/state:湖北(HUBEI)
  • City:武汉(WUHAN)
  • Street:Room301 at 3rd floor,building of R&D in Non-governmental Science&Technology Zone,Che cheng South Road of Economic&Technology Area, Wuhan , Hubei province, China
  • MaxCard:
Home > Products >  Corosolic acid

Corosolic acid CAS NO.4547-24-4

  • Min.Order: 10 Milligram
  • Payment Terms: T/T
  • Available Specifications:

  • Product Details

Keywords

  • Corosolic acid
  • 4547-24-4
  • standard supplier in China

Quick Details

  • ProName: Corosolic acid
  • CasNo: 4547-24-4
  • Molecular Formula: C30H48O4
  • Appearance: detailed see specifications
  • Application: analysis,activity test,Botanical Refer...
  • DeliveryTime: 1-3?working?days?after?confirming?the?...
  • PackAge: According to the clients requirement.
  • Port: China main port
  • ProductionCapacity: 1 Metric Ton/Day
  • Purity: ≥98%
  • Storage: Store at 2~8°C
  • Transportation: by air or by ocean shipping
  • LimitNum: 10 Milligram
  • Plant of Origin: Chinese herbal medicine
  • Testing Method: NMR/MS/HPLC
  • Product Ecification: 1mg-1kg
  • Heavy Metal: <10ppm
  • Voluntary Standards: company standard
  • Storage: Store in dry, dark and ventilated plac...
  • PackAge: Brown vial HDPE plastic bottle

Superiority

Hubei CuiRan Biotechnology Co., Ltd is a leading company in the research, development, manufacture and marketing of High Quality Phytochemicals and Extracts(especially Active Ingredients from Traditional Chinese Medicine,Traditional Chinese Medicine), Natural Active Pharmaceutical Ingredients worldwide. From small quantities for R&D or reference standard, to large quantities for customizing or manufacturing, Biopurify emphasizes on consistent and reliable services for his customers. 
With excellent quality products and good service, we have clients from more than dozens countries and regions, and we pride ourselves in providing our customers with a total satisfaction experiences.
We are doing our best to be your reliable partner for high quality Phytochemicals and Reference Standards from china.
 
Our main services:
A. Supply active ingredients and reference standards ofTraditional Chinese Medicine, from mgs to kgs scale.
B. Custom extraction and purification, target Herb Active Ingredients
C. Custom synthesis and semi-synthesis for Natural Active Ingredients
D. CR, CM and PD services from lab scale, pilot scale to commercial scale(GMP is also available)
E.Traditional Chinese Medicine compounds library
 

1.Provide traditional Chinese medicine reference materials and natural active ingredients;
2.More than 2200 compounds are available for selection, continuously building high-quality natural product libraries for drug research and development;
3.Provide various screening libraries and more inhibitor products;
4.Provide separation and structural determination of natural products;
5.Laboratory scale pilot to commercial scale collaborative research and process development services.More than 180 experiences in phytochemistry (still increasing)
Each product has passed very strict testing (NMR/MS/HPLC)
Agents from many countries

General tips:For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging:1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition:Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Details

Chemical Properties of Corosolic acid

Cas No. 4547-24-4    
PubChem ID 165244 Appearance White powder
Formula C30H48O4 M.Wt 472.7
Type of Compound Triterpenoids Storage Desiccate at -20°C
Synonyms Colosic acid; Colosolic acid; Corsolic acid; Glucosol
Solubility DMSO : ≥ 50 mg/mL (105.78 mM)
H2O : < 0.1 mg/mL (insoluble)
*"≥" means soluble, but saturation unknown.
Chemical Name (1S,2R,4aS,6aR,6aS,6bR,10R,11R,12aR,14bR)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid
SMILES CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CC(C(C5(C)C)O)O)C)C)C2C1C)C)C(=O)O
Standard InChIKey HFGSQOYIOKBQOW-MMNUXRFXSA-N
Standard InChI InChI=1S/C30H48O4/c1-17-10-13-30(25(33)34)15-14-28(6)19(23(30)18(17)2)8-9-22-27(5)16-20(31)24(32)26(3,4)21(27)11-12-29(22,28)7/h8,17-18,20-24,31-32H,9-16H2,1-7H3,(H,33,34)/t17-,18+,20-,21?,22-,23-,24+,27+,28-,29-,30+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Corosolic acid

1 Eriobotrya sp. 2 Isodon sp. 3 Lagerstroemia sp. 4 Psidium sp. 5 Ziziphus sp.

Biological Activity of Corosolic acid

Description Corosolic acid has antitumor, anti-inflammatory and hypoglycemic activities, it can ameliorate hypertension, abnormal lipid metabolism, and oxidative stress as well as the inflammatory state in SHR-cp rats; it can improve glucose metabolism by reducing insulin resistance, it inhibits the enzymatic activities of several diabetes-related non-receptor protein tyrosine phosphatases (PTPs) in vitro, such as PTP1B, T-cell-PTP, src homology phosphatase-1 and src homology phosphatase-2. Corosolic acid can suppress the M2 polarization of macrophages and tumor cell proliferation by inhibiting both STAT3 and NF-κB activation, it also can enhance the antitumor effects of adriamycin and cisplatin in in vitro.
Targets FAK | ERK | Caspase | PARP | VEGFR | Src | Bcl-2/Bax | NF-κB | STAT | PTPs
In vitro

Microbial transformation of the anti-diabetic agent corosolic acid.[Pubmed: 25190540]

Nat Prod Res. 2014;28(21):1879-86.


METHODS AND RESULTS:
Biotransformation of Corosolic acid (1) by Cochliobolus lunatus and Streptomyces asparaginoviolaceus afforded four metabolites, which were identified by using (1)H NMR, (13)C NMR, DEPT, HSQC, HMBC and NOESY spectral data. Biotransformation of Corosolic acid by C. lunatus R.R. Nelson & Haasis CGMCC 3.4381 produced three metabolites: 2α,3β,21β-trihydroxyurs-12-en-28-oic acid (2), 2α,3β,7β,21β-tetrahydroxy-urs-12-en-28-oic acid (3) and 2α,3β-dihydroxy-21-oxours-12-en-28-oic acid (4). Incubation of Corosolic acid with growing cultures of S. asparaginoviolaceus CGMCC 4.0175 afforded metabolite 2α,3β,30-trihydroxyurs-12-en-28-oic acid (5). All the metabolites were reported for the first time.
CONCLUSIONS:
The substrate and four metabolites, along with four products obtained previously, were evaluated for their inhibitory effects on α-glucosidase; all the triterpenes tested showed potent inhibitory effects.

In vivo

Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model.[Pubmed: 25644809]

Phytother Res. 2015 May;29(5):714-23.

We describe the anti-angiogenic and anti-lymphangiogenic effects of Corosolic acid, a pentacyclic triterpenoid isolated from Cornus kousa Burg.
METHODS AND RESULTS:
A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of Corosolic acidCorosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. In addition, it reduced the final tumor volume and the blood and lymphatic vessel densities of tumors, indicating that it suppresses in vivo angiogenesis and lymphangiogenesis. Corosolic acid inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells. In addition, Corosolic acid decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1.
CONCLUSIONS:
Pretreatment with Corosolic acid decreased the phosphorylation of focal adhesion kinase (FAK) and ERK1/2, suggesting that Corosolic acid contains anti-angiogenic activity that can suppress FAK signaling induced by angiopoietin-1.

Protocol of Corosolic acid

Kinase Assay

Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.[Pubmed: 25978354 ]

Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β-catenin degradation.[Pubmed: 24566423]

Food Chem Toxicol. 2014 May;67:87-95.

Ursolic acid (UA) and Corosolic acid (CA), naturally occurring pentacyclic triterpene acids, exhibit antiproliferative activities against various cancer cells, but a clear chemopreventive mechanism of these triterpenoids in colon cancer cells remains to be answered.
METHODS AND RESULTS:
Here we used a cell-based reporter system for detection of β-catenin response transcription (CRT) to identify UA as an antagonist of the Wnt/β-catenin pathway. UA promoted the degradation of intracellular β-catenin that was accompanied by its N-terminal phosphorylation at Ser33/37/Thr41 residues, marking it for proteasomal degradation. Consistently, UA down-regulated the intracellular β-catenin level in colon cancer cells with inactivating mutations of adenomatous polyposis coli (APC). In addition, UA repressed the expression of β-catenin/T-cell factor (TCF)-dependent genes, thereby inhibiting cell proliferation in colon cancer cells. The functional group analysis revealed that the major structural requirements for UA-mediated β-catenin degradation are a carboxyl group at position 17 and a methyl group at position 19. Notably, CA (2α-hydroxyursolic acid) was also found to decrease the level of intracellular β-catenin and to suppress the growth of APC-mutated colon cancer cells.
CONCLUSIONS:
Our findings suggest that UA and CA exert their anticancer activities against colon cancer cells by promoting the N-terminal phosphorylation and subsequent proteasomal degradation of β-catenin.

PLoS One. 2015 May 15;10(5):e0126725.

Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC).
METHODS AND RESULTS:
In this study, we identified Corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations.
CONCLUSIONS:
In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.

Cell Research

Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway.[Pubmed: 24481288]

Int J Mol Med. 2014 Apr;33(4):943-9.

Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated.
METHODS AND RESULTS:
In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VAD?FMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin.
CONCLUSIONS:
Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.

Preparing Stock Solutions of Corosolic acid

  1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.1155 mL 10.5775 mL 21.1551 mL 42.3101 mL 52.8877 mL
5 mM 0.4231 mL 2.1155 mL 4.231 mL 8.462 mL 10.5775 mL
10 mM 0.2116 mL 1.0578 mL 2.1155 mL 4.231 mL 5.2888 mL
50 mM 0.0423 mL 0.2116 mL 0.4231 mL 0.8462 mL 1.0578 mL
100 mM 0.0212 mL 0.1058 mL 0.2116 mL 0.4231 mL 0.5289 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

References on Corosolic acid

Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of beta-catenin degradation.[Pubmed:24566423]

Food Chem Toxicol. 2014 May;67:87-95.

Ursolic acid (UA) and Corosolic acid (CA), naturally occurring pentacyclic triterpene acids, exhibit antiproliferative activities against various cancer cells, but a clear chemopreventive mechanism of these triterpenoids in colon cancer cells remains to be answered. Here we used a cell-based reporter system for detection of beta-catenin response transcription (CRT) to identify UA as an antagonist of the Wnt/beta-catenin pathway. UA promoted the degradation of intracellular beta-catenin that was accompanied by its N-terminal phosphorylation at Ser33/37/Thr41 residues, marking it for proteasomal degradation. Consistently, UA down-regulated the intracellular beta-catenin level in colon cancer cells with inactivating mutations of adenomatous polyposis coli (APC). In addition, UA repressed the expression of beta-catenin/T-cell factor (TCF)-dependent genes, thereby inhibiting cell proliferation in colon cancer cells. The functional group analysis revealed that the major structural requirements for UA-mediated beta-catenin degradation are a carboxyl group at position 17 and a methyl group at position 19. Notably, CA (2alpha-hydroxyursolic acid) was also found to decrease the level of intracellular beta-catenin and to suppress the growth of APC-mutated colon cancer cells. Our findings suggest that UA and CA exert their anticancer activities against colon cancer cells by promoting the N-terminal phosphorylation and subsequent proteasomal degradation of beta-catenin.

Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model.[Pubmed:25644809]

Phytother Res. 2015 May;29(5):714-23.

We describe the anti-angiogenic and anti-lymphangiogenic effects of Corosolic acid, a pentacyclic triterpenoid isolated from Cornus kousa Burg. A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of Corosolic acidCorosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. In addition, it reduced the final tumor volume and the blood and lymphatic vessel densities of tumors, indicating that it suppresses in vivo angiogenesis and lymphangiogenesis. Corosolic acid inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells. In addition, Corosolic acid decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1. Pretreatment with Corosolic acid decreased the phosphorylation of focal adhesion kinase (FAK) and ERK1/2, suggesting that Corosolic acid contains anti-angiogenic activity that can suppress FAK signaling induced by angiopoietin-1.

Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway.[Pubmed:24481288]

Int J Mol Med. 2014 Apr;33(4):943-9.

Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VADFMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin. Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.

Microbial transformation of the anti-diabetic agent corosolic acid.[Pubmed:25190540]

Nat Prod Res. 2014;28(21):1879-86.

Biotransformation of Corosolic acid (1) by Cochliobolus lunatus and Streptomyces asparaginoviolaceus afforded four metabolites, which were identified by using (1)H NMR, (13)C NMR, DEPT, HSQC, HMBC and NOESY spectral data. Biotransformation of Corosolic acid by C. lunatus R.R. Nelson & Haasis CGMCC 3.4381 produced three metabolites: 2alpha,3beta,21beta-trihydroxyurs-12-en-28-oic acid (2), 2alpha,3beta,7beta,21beta-tetrahydroxy-urs-12-en-28-oic acid (3) and 2alpha,3beta-dihydroxy-21-oxours-12-en-28-oic acid (4). Incubation of Corosolic acid with growing cultures of S. asparaginoviolaceus CGMCC 4.0175 afforded metabolite 2alpha,3beta,30-trihydroxyurs-12-en-28-oic acid (5). All the metabolites were reported for the first time. The substrate and four metabolites, along with four products obtained previously, were evaluated for their inhibitory effects on alpha-glucosidase; all the triterpenes tested showed potent inhibitory effects.

Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.[Pubmed:25978354]

PLoS One. 2015 May 15;10(5):e0126725.

Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified Corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.

Description

Corosolic acid isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

Keywords:

Corosolic acid,4547-24-4,Colosic acid; Colosolic acid; Corsolic acid; Glucosol,Natural Products, buy Corosolic acid , Corosolic acid supplier , purchase Corosolic acid , Corosolic acid cost , Corosolic acid manufacturer , order Corosolic acid , high purity Corosolic acid

 

Other products of this supplier

lookchemhot product CAS New CAS Cas Database Article Data Chemical Catalog